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1. Introduction

The HgTe-based quantum well (QW) is a 
semiconductor system, where the two-dimensional 
(2D) conduction and valence subbands, divided by a 
narrow variable gap, can be created. The switch between 
the electron and the hole types of transport is achieved 
by the gate control. The gap energy is controlled 
by the well width d  and goes to zero at d � 6.3 nm, 
when the electron energy spectrum resembles a Dirac 
cone, like in graphene. Wider wells have an inverted 
energy band order, known to be in the state of 2D 
topological insulator (TI) [1] characterized by a pair 
of counterpropagating gapless edge modes. The edge 
states have a helical spin structure and are supposed to 
be robust to backscattering. The edge state transport 
in such HgTe QWs has been confirmed experimentally 
for ballistic transport in mesoscopic samples [2–4] 
and for diffusive transport in macroscopic samples  
[4, 5]. Similar results have been obtained in 
experiments on Si-doped InAs/GaSb quantum wells 
[6–9] which are also believed to be 2D TI. Application 

of novel experimental methods for the study of the 
transport properties of 2D TI is of particular interest.

The thermoelectric measurements can give comple-
mentary information about electron transport in met-
als and semiconductors and are used as a powerful tool 
for probing the sign of the charge carriers and the trans-
port mechanisms. The diffusive thermopower is often 
described using the Mott relation, as the logarithmic 
derivative of the energy-dependent electrical conduc-
tivity. Apart from necessitating the validity of the Boltz-
mann equation and the degeneracy of the electron gas, 
the Mott relation has also other limitations discussed in 
the literature. In particular, a strong energy dependence 
of the relaxation time, when this time changes consider-
ably within the kT  interval around the Fermi level, causes 
a failure of the simple Mott relation. Indeed, the devia-
tion from the Mott relation has been observed in ther-
mopower experiments in graphene near the charge neu-
trality point (CNP) and at high temperatures [10, 11]. 
Application of the original Mott relation [12], which is 
more general because it is not based on the approximate  
Sommerfeld expansion, allows one to overcome these 

G M Gusev et al

Thermoelectric transport in two-dimensional topological insulator state based on HgTe quantum well

014001

2D MATER.

© 2018 IOP Publishing Ltd

6

2D Mater.

2DM

2053-1583

10.1088/2053-1583/aaf702

1

1

11

2D Materials

IOP

21

December

2018

Thermoelectric transport in two-dimensional topological insulator 
state based on HgTe quantum well

G M Gusev1 , O E Raichev2, E B Olshanetsky3, A D Levin1, Z D Kvon3,4, N N Mikhailov3 and S A Dvoretsky3

1 Instituto de Física da Universidade de São Paulo, 135960-170, São Paulo, SP, Brazil
2 Institute of Semiconductor Physics, NAS of Ukraine, Prospekt Nauki 41, 03028 Kyiv, Ukraine
3 Institute of Semiconductor Physics, Novosibirsk 630090, Russia
4 Novosibirsk State University, Novosibirsk, 630090, Russia

E-mail: gusev@if.usp.br

Keywords: topological insulator, thermopower, edge states, quantum transport, HgTe quantum well

Supplementary material for this article is available online

Abstract
The thermoelectric response of HgTe quantum wells in the state of two-dimensional topological 
insulator (2D TI) has been studied experimentally. Ambipolar thermopower, typical for an electron–
hole system, has been observed across the charge neutrality point, where the carrier type changes 
from electrons to holes according to the resistance measurements. The hole-type thermopower is 
much stronger than the electron-type one. The thermopower linearly increases with temperature. We 
present a theoretical model which accounts for both the edge and bulk contributions to the electrical 
conductivity and thermoelectric effect in a 2D TI, including the effects of edge to bulk leakage. The 
model, contrary to previous theoretical studies, demonstrates that the 2D TI is not expected to show 
anomalies of thermopower near the band conductivity threshold, which is consistent with our 
experimental results. Based on the experimental data and theoretical analysis, we conclude that the 
observed thermopower is mostly of the bulk origin, while the resistance is determined by both the 
edge and bulk transport.
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limitations and describe the thermopower in a wide 
range of temperature and carrier density [13]. How-
ever, in the case of strongly inelastic scattering by optical  
phonons, considerable deviations even from the Mott 
relation in its general form are expected, as recently dem-
onstrated in high mobility graphene samples [14, 15].

Similar to graphene, the system based on HgTe 
quantum wells reveals ambipolar Hall effect accompa-
nied by the resistance peak near the CNP. However, in 
contrast to the gapless graphene, in 2D TI the transition 
between the electron and hole types of conduction as 
the gate voltage is swept through the CNP, occurs when 
the Fermi level stays in the insulating gap and trans-
port is determined by the edge states. The position of 
the Fermi level in the gap is stabilized by the bulk states 
which are present in the gap because of a random spa-
tial inhomogeneity (disorder). These states are often 
considered as localized ones. However, electron trans-
itions between the edge and the bulk states are possible 
and may influence transport properties in 2D topo-
logical insulators [4, 5, 16]. The edge to bulk mixing 
is believed to cause a strong enhancement of the ther-
mopower in 2D TI. In particular, it is suggested [17, 18] 
that when the Fermi level approaches the bulk band 
edge, the scattering rate of electrons in the edge states 
increases rapidly and significantly, which is expected to 
cause an anomalous growth of the amplitude of See-
beck signal and a change of its sign. This offers a new 
opportunity to improve the thermoelectric param-
eter, such as the figure of merit zT , which is defined as 

zT = GS2T/(Ke + Kph), where G is the electron con-
ductance, S is the Seebek coefficient, Ke  and Kph are 
the thermal conductances of electrons and phonons 
consequently. The interplay between the edge and the 
bulk conductances leads to a strong dependence of the 
parameter zT  on the sample geometry and size. It has 
been predicted that the value of the figure of merit can 
be improved by more than  ∼1 for a certain geometry at 
room temperature [17, 18]. Despite the interest to the 
thermoelectric properties in 2D topological insulators, 
the experimental studies have almost all been focused 
on the measurements of the electrical resistance.

In the present paper we report an experimental 
study of the thermopower in band-inverted HgTe-
based quantum wells. At the CNP where the resistance 
reaches its maximum, the thermopower changes its 
sign, showing the ambipolar behavior. The nonlocal 
resistance in our samples is comparable with the local 
one. This observation clearly proves the presence of 
the edge state transport, which dominates within the 
bulk gap. Importantly, we do not observe any of the 
anomalies of the Seebeck effect predicted in [17, 18], 
in particular, the sign of the effect changes like in a 
normal electron–hole system. This apparently sug-
gests that the effect of the edge to bulk scattering on 
the transport is not as significant as it was expected. To 
verify this statement, we have carried out a calculation 
of conductivity and thermopower in the 2D TI, taking 
into account both the particle and energy balance in 

the coupled system of edge and bulk states. In brief, we 
demonstrated that the transport properties are deter-
mined not by the edge to bulk scattering rate alone, but 
by the spin current flowing between the edge and the 
bulk. If the spin relaxation in the bulk is slow, a bot-
tleneck effect takes place, when the spin current is lim-
ited by the bulk conductivity rather than by the edge 
to bulk scattering rate. Therefore, in the region where 
the bulk conductivity is smaller than the conductance 
quantum e2/h the scattering between the edge and the 
bulk is expected to be insignificant, while in the regions 
of larger bulk conductivity the edge-state contrib ution 
to transport is no longer important. Further, from 
a qualitative analysis of our experimental data sup-
ported by the theoretical considerations, we conclude 
that the observed thermopower is mostly of the bulk 
transport origin.

The paper is organized as follows. Section 2 con-
tains the description of measurements and exper-
imental results. Section 3 is devoted to the theoretical 
model and to discussion of the results based on this 
model. The concluding remarks are given in the last 
section.

2. Experiment

To probe the carrier transport, we measured 
thermoelectric voltage V  and thermopower S together 
with the resistance. The quantum well structures Cd0.65

Hg0.35Te/HgTe/Cd0.65Hg0.35Te with [0 1 3] surface 
orientations and widths d = 8–8.3 nm were prepared 
by molecular beam epitaxy (figure 1, left panel). The 
sample is a long Hall bar consisting of three 3.2 µm 
wide consecutive segments of different length (3, 9, 
and 35 µm) and seven voltage probes, covered by the 
TiAu gate (see figure 1, top panel). The measurements 
were performed in a variable temperature insert 
cryostat in the temperature range 1.4–10 K using the 
standard four point scheme. A detailed description 
of the sample structure has been given in [5]. The 
electrically powered heater placed symmetrically 
near the contact 1 (see figure 2, top panel) creates 
temperature gradient in the system, while the other 
end is indium soldered to a small copper slab that 
serves as a thermal ground. The copper slab is, in 
turn, connected to the copper rod of the sample 
holder. One calibrated thermo sensor is attached at 
the end of the sample near the heater while the other 
is attached to the heat sink. The thermo sensors were 
used to measure the ∆T along the sample. The voltages 
induced by this gradient were measured by a lock-in 
detector at the frequency of 2f0 = 0.8–2 Hz across 
various voltage probes. The thermal conductance of 
the sample is overwhelmingly dominated by phonon 
transport in the GaAs substrate [19, 20]; diffusive heat 
transport by the two-dimensional gas is negligible 
in comparison. The thermal conductivity κ of a 
pure dielectric crystal is usually determined by the 
boundary scattering at low temperatures and depends 
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Figure 1. Sample geometry and resistance of shortest segment (RI=1,6;V=4,5) as a function of the gate voltage for different 
temperatures (sample A). Left-schematic structure of the sample.

Figure 2. Resistance (a) and thermovoltage (b) for different heater powers (indicated) as a function of gate voltage, T = 4.2 K 
(sample A).

2D Mater. 6 (2019) 014001
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on the temperature as κ ∼ T3. We performed the 
measurements of the thermal conductivity in our 
samples and obtained the value 300–200 W m−1 K−1 
at T = 4.2 K for different substrates, which agrees 
with the previous measurements [19, 20]. We did not 
directly measure the temperature difference between 
the voltage probes, since the distance is very small. We 
estimate this difference between probes 3 and 2 as  ∼20 
mK K for the heater power used in our experiment. For 
a given temperature difference between the sample 
extremities the temperature profile along the sample 
could be nonlinear, especially close to the ends of the 
substrates. The situation is somewhat similar to the 
electrical measurements, when the electric potential 
profile is inhomogeneous near the metallic contacts. 
However, we expect that in the center of the sample and 
along the short distances the profile is linear. We have 
also checked that the temperature difference varies 
linearly with heater power. Four different devices have 
been studied. Below we show the results obtained in 
two representative samples (A and B).

The variation of the resistance with the gate volt-
age and lattice (bath) temperature is shown in figure 1. 
The resistance of the shortest segment reveals a broad 
peak whose amplitude is larger than the value h/2e2 
expected in the ballistic case. We see that the resist-
ance decreases sharply for temperatures above 15 K 
while saturating below 10 K. We find that the profile 
of the resistance temperature dependencies above 
T > 15 K fits very well the activation law R exp(∆/2 
kT), where Δ is the activation gap. Insert in figure 1 
shows the peak maximum resistance versus temper-
ature. The thermally activated behavior of resistance 
above 15 K corresponds to a gap of 10 meV between 
the conduction and valence bands in the HgTe well. 
The mobility gap can be smaller than the energy gap 
due to disorder. Figure 2 shows the resistance and ther-
movoltage as a function of the gate voltage measured 

between probes 4 and 5 at T = 4.2 K. The thermovolt-
age increases nearly linearly with heater power, which 
proves that we measure the longitudinal (Seebeck) 
thermoelectric effect. The signal shows a behavior sim-
ilar to other electron–hole systems such as graphene 
[10, 11]. It changes sign at the charge neutrality point 
(CNP) and decreases with the carrier density increas-
ing. The voltage interval between the electron-like and 
hole-like regimes (∆Vg ∼ 1 V) is almost two times 
smaller than the half-width of the resistance peak. The 
figure 3(a) displays the traces of the thermopower ver-
sus Vg for different temperatures. Figure 3(b) shows 
the temperature dependence of the thermopower 
measured across a longer bridge at a selected gate volt-
age Vg − VCNP = −1.2 V (hole side) where the ther-
mopower approaches its maximum. It is found that 
the signal grows almost linearly with temper ature: 
S ∼ T1.3±0.1 (figure 3(b)) in the temper ature inter-
val 2.2 < T < 4.2 K. This temperature interval was 
selected, because resistance becomes temper ature 
dependent above T > 10 K (see figure 1), and metal-
lic approximation for thermopower is no longer valid. 
It is worth noting that prior to the thermoelectric 
measurements the thermal conductance of the sam-
ple has been determined. The thermoconductance is 
dominated by the phonon transport in the substrate; 
the contribution from the diffusive heat transfer by the 
electrons is negligibly small. The thermal conductiv-
ity of the GaAs substrate is usually determined by the 
boundary scattering at low temperatures [19, 20]. The 
thermoconductivity is given by:

κ =
2π2

15

kΛ

v2
ph

(
kT

h

)3

, (1)

where Λ is the phonon mean-free path and vph = 3300 
m s−1 the appropriate mean acoustic phonon velocity. 
Figure 3(c) shows the thermal conductivity of the 
GaAs substrate as a function of the lattice temperature. 

Figure 3. (a) Thermopower for different temperatures. (b) Temperature dependence of thermopower at Vg − VCNP = −1.2 V.   
(c) Lattice thermoconductivity of the GaAs substrate as a function of the temperature (sample B).

2D Mater. 6 (2019) 014001
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The thermal conductivity follows κ ∼ T3 law, in 
accordance with equation (1). The value of κ is  ∼600 
W m−1 K−1 at T = 4.2 K, which agrees well with 
the previously measured thermoconductivity in 
pure GaAs substrates [19, 20]. Once the thermal 
conductance is found, the temperature gradient can be 
used to convert the measured thermoelectric voltages 
into the thermopower. Figure 4 shows resistance 
as a function of the gate voltage measured between 
different probes at T = 4.2 K. It is worth noting that 
the edge current flows along the gated sample edge 
whose length Lgate  is longer than the distance between 
the probes L  (bulk current path) and corresponds to 
5–6 µm. For longer distances between the probes we 
see higher resistances. The large resistance can appear 
because of multiple transitions of electrons between 
counterpropagating helical edge states caused by either 
direct backscattering or electron transfer mediated 
by the bulk states in the puddles [21] emerging due 
to spatial potential fluctuations near the edge. The 
observation of a nonlocal resistance constitutes the 
main proof of the presence of the edge state transport 
in a 2D TI. A systematic study of the local and nonlocal 
transport in 2D TI has been preformed in the previous 
works in the ballistic [3, 4] and in the diffusive regimes 
[16]. The dependence of the resistance peak on the 
length Lgate  is shown in figure 4(c). It is found to be 
very close to the 1/Lgate dependence. The thermopower 
signal has a nonmonotonic dependence on the 
distance Lgate  (figure 4(c)) in contrast to the resistance. 
Below we consider the theory, which accounts for 
both the edge and bulk contributions to the electrical 
conductance and thermoelectric effect in 2D TI, 
including the effects of edge to bulk leakage.

Finally a few words need to be said about the ther-
moelectric efficiency in the 2D topological insulator 
regime. As mentioned in the introduction, in conven-

tional semiconductors the factor zT  is size independ-
ent because the geometrical factor is canceled between 
the conductance and the thermoconductance. In 2D 
topological insulator regime factor zT  can be optim-
ized by choosing appropriate geometries [18]. A large 
enhancement of the power factor is predicted for the 
gapless edge states near the charge neutrality point. 
Figure 5(a) shows the conductance measured near the 
CNP as a function of the gate voltage. It is expected 
that when the edge-state contribution to the trans-
port is important, the nonlocal resistance should be 
observed [3, 4].

For comparison figure 5(a) presents an example of 
the nonlocal resistance when the current flows between 
contacts 4–8 and the voltage is measured between 
contacts 5–7, i.e. RI=4,8;V=5,7. The nonlocal resistance 
peaks are narrower and lower as compared to the local 
resistance peaks measured in the same device. Sim-
ple estimation from Kirchoff formula (see for details 

[16]), gives RI=4,8;V=5,7 = 0.6 h
e2  for the mean free 

path l = 10 µm, which in 2 times large than the exper-

imental value RI=4,8;V=5,7 = 0.3 h
e2 . It is not surprising, 

since when the edge current flows over a long distance 
(in this particular case L4,8 � l) there is a high proba-
bility for the coupling with the bulk states, and the total 
current experiences considerable leakage into the bulk. 
An advanced theory, considered in [16], is required for 
a more detailed analysis. However, we may conclude 
here that the edge state transport dominates in the 
voltage interval −1 V < Vg < 1 V. Figure 5(b) shows 

the coefficient GS2 as a function of the gate voltage near 
the CNP in the edge state transport regime at T = 4.2 
K. It is clear that an enhancement of GS2 is observed 
compared to other than TI cases on the hole-side of 
the resistance peak. Unfortunately this enhancement is 
observed at low temperature and is unlikely to  survive 

Figure 4. (a) Resistance R as a function of gate voltage measured between various voltage probes, T = 4.2 K, I = 10−9 A. (b) 
Thermopower as a function of the gate voltage measured between various voltage probe, T = 4.2 K. (c) Resistance at the CNP and 
thermopower at Vg − VCNP = −0.7 V as a function of the distance between the voltage probes L  (sample B).

2D Mater. 6 (2019) 014001
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at high T  (see figure 1). However, quite recently the TI 
state has been observed at T ∼ 100 K [22], and one 
may hope that the thermopower characteristics pre-
sented here could be valid at higher temperatures in 
these new materials.

3. Theory

Since the thermovoltage follows almost linear 
temperature dependence and monotonically 
decreases with increasing carrier density far away from 
the CNP, the thermopower is likely determined by the 
diffusive mechanism. The phonon drag thermopower 
would have different temperature dependence. In 
comparison to GaAs quantum wells, where the phonon 
drag mechanism is essential, in HgTe quantum wells 
this mechanism should be much less important 
because of relative smallness of deformation-potential 
and piezoelectric constants in HgTe, and because of 
relative smallness of the density of states of 2D carriers. 
In the edge state transport, the possibility of phonon 
drag is negligible because of topological protection of 
the edge states. Therefore, we consider the diffusive 
mechanism in the following.

The transport in the edge channel k (since the 
channel is helical, k = 1, 2 denote both the direction 
of motion and spin orientation) along the axis Ox is 
described by the Boltzmann equations for the energy 
distribution functions of electron, fkε(x):

sk
∂fkε

∂x
= γε( fk′ε − fkε) + gε(Fkε − fkε) +

Jee
kε

v
+

J ph
kε

v
,

 (2)

where k′ �= k , v is the edge state velocity, Fkε(x, y) is the 
isotropic part of the electron distribution function in 
the bulk, γε = νbs

ε /v and gε = νeb
ε /v  are the inverse 

mean free path lengths for elastic backscattering 
and edge to bulk scattering (νbs  and νeb are the 

corresponding scattering rates). Next, Jee  and J ph are 
the collision integrals for inelastic processes, electron–
electron and electron–phonon scattering. Assuming 
that the electrons in the state 1 move from the left to 
the right (i.e. have positive velocity), we put s1 = 1 and 
s2 = −1. The transitions between counterpropagating 
edge states (either elastic or inelastic [23]) are rare 
because of topological protection, while the scattering 
between the edge and the bulk is weak because of low 
probability of finding the bulk-state puddles [21] in 
the close vicinity to the edge (it may become strong, 
however, above the threshold of band conductivity). 
On the other hand, the inelastic electron–electron 
scattering within a single edge channel is free from 
these restrictions and, therefore, is much stronger. 
Moreover, such kind of scattering has a very large 
phase space, especially if v is energy-independent 
so that momentum and energy conservation rules 
are satisfied simultaneously for any two electrons 
participating in the collisions [24]. As the electron–
electron scattering controls electron distribution, 
we search the distribution function in the Fermi-like  
form, fkε(x) = {exp[(ε− ϕk(x))/Tke(x)] + 1}−1 [24],  
characterized by the coordinate-dependent 
elecrochemical potential ϕk and temperature 
Tke. Assuming that in the bulk the different spin 
states are weakly coupled, we use the similar form for 
Fkε(x, y). Indeed, in the original Bernevig–Hughes–
Zhang Hamiltonian [25] describing HgTe quantum 
wells the spin states are uncoupled, the coupling 
appears when the spin–orbit terms are introduced 
[2]. The coupling in symmetric wells is described by 
the bulk inversion asymmetry parameter Δ [2], and 
the probability ratio of spin-flip to spin-conserving 
transitions is estimated as a ratio of the energy Δ to 
the gap energy. This ratio is small (about 0.05) for our 
quantum wells.

Figure 5. (a) Conductance G = 1/RI=1,6;V=4,5 and nonlocal resistance RNL = RI=4,8;V=5,7 as a function of the gate voltage.  
(b) Coefficient GS2 as a function of the gate voltage near CNP, T = 4.2 K (sample B).

2D Mater. 6 (2019) 014001
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Integrating equation (2) over ε, then multiply-
ing equation (2) by ε and integrating again, we obtain 
four balance equations expressing conservation of 
particles and energy (for details see supplementary 
information (stacks.iop.org/TDM/6/014001/mme-
dia)). They are solved together with the balance equa-
tions for the bulk states and boundary conditions 
expressing conservation of currents and energy fluxes 
at the edge. We consider the case when particle trans-
fer between edge and bulk occurs only in the narrow 
regions near the contacts, while in the most part of 
the edge a dynamical equilibrium is reached, when 
only spin currents between edge and bulk are flow-
ing. This corresponds to the condition g � 1/L  ( g  
is energy averaged quantity of gε, defined below) and 
leads to a homogeneous distributions of temper atures 
and potentials at the edge: the  spin-averaged poten-
tials and temperatures linearly depend on x, while the 
quantities describing spin polarization, δϕ = ϕ1 − ϕ2 
and δTe = T1e − T2e, are constants. Only this condi-
tion is relevant, because under the opposite condi-
tion g � 1/L the particle transfer between edge and 
bulk cannot have a sizeable influence on the trans-
port. The current carried by a single edge is given as 
Ie = (e/h)

∫
dε( f1ε − f2ε) = (e/h)δϕ, and the ther-

mal current (energy flux minus µIe/e) along the edge is 
We = (1/h)

∫
dε(ε− µ)( f1ε − f2ε) = (π2/3h)TδTe , 

where µ and T  are the equilibrium chemical potential 
and temperature. The total current I = Ibulk + 2Ie and 
the total thermal current W = Wbulk + 2We are con-
nected to the voltage ∆V  and temperature difference 
∆T between the contacts by a linear relation

(
I

(e/T)W

)
=

2e2

h
Ĝ
(

∆V

∆T/e

)
, (3)

where we introduced a thermoelectric response matrix

Ĝ =
wσ̃

L
M̂ + ĉ

[
ĉ + Lγ̂ +

L

2

( w

2σ̃
M̂−1 + ĝ−1

)−1
]−1

ĉ.

 (4)

The first and the second terms of this matrix describe 
the bulk and the edge contributions, respectively, and 
the term in the round braces describes the influence of 
the edge to bulk leakage on the edge transport. Here and 
below, ̃σ = σ/(e2/h), σ is the bulk conductivity per spin, 
L is the distance between the contacts, w is the sample 
width, and the matrices are defined as

γ̂ =

(
γ γI

γI γII

)
, ĝ =

(
g gI

gI gII

)
, ĉ =

(
1 0

0 π2/3

)
,

 (5)

M̂ =
1

σ

(
σ σI

σI σII

)
=

(
1 eSb

eSb e2(κb/σT + S2
b)

)
.

 (6)

The matrix M̂  describes thermoelectric response in 
the bulk (for details see supplementary information) 
and is expressed through the bulk thermopower 
S = Sb and electronic thermal conductivity 

κb. The quantities X, XI, and XII  are introduced 

as the averages X ≡ 〈Xε〉 =
∫

dε(−∂f (0)
ε /∂ε)Xε,   

XI ≡ 〈Xε(ε− µ)/T〉, and XII ≡ 〈Xε(ε− µ)2/T2〉,    
where f (0)

ε = {exp[(ε− µ)/T] + 1}−1 is the equilib-
rium distribution. Equation (3) is written under an 
additional assumption that spin relaxation length in 
the bulk exceeds the sample halfwidth w/2. We also 
neglected energy transfer between the edge states 
and the lattice, which is justified, according to our 
estimates, in the samples of submillimeter length. 
The total thermopower Stot = −(∆V/∆T)I=0 is 
determined by the ratio of non-diagonal to diagonal 
elements of the matrix (3), Stot = e−1G12/G11. The 
total conductance is Gtot = I/∆V = (2e2/h)G11.

In the general case, equation (3) tells us that under 
conditions σ̃ < 1, where the edge conductivity can be 
significant, the contribution due to ĝ  is not impor-
tant (unless gw/2 < σ̃ < 1 which necessarily implies 
w � L because g � 1/L  is assumed). The whole 
contrib ution of the term describing edge to bulk  

leakage in Ĝ  cannot exceed (L/w)σ̃M̂ and can be 

neglected in the case of γL � 1. This is a manifestation 
of the bottleneck effect described in the Introduction. 
On the other hand, when σ̃ � 1, there is no need to 
take the edge transport into account.

In the case when Sommerfeld expansion for each 
of the energy-dependent parameters is valid, i.e. 

X̂ � ĉX + (π2/3)TX′σ̂x, where X′ = dXµ/dµ and 

σ̂x =

(
0 1

1 0

)
, the Mott relation S = (π2/3e)T(G′/G) 

is valid as well. Then the second term in equation (3) is 
simplified and leads to the edge state contribution to 
the conductance and thermopower as follows:

Ge =
e2

h
F−1, F = 1 + γL +

( L
w )σ̃gL

( 2L
w )σ̃ + gL

, (7)

Se =
π2T

3|e|
F ′

F
, (8)

while the total conductance and thermopower are

Gtot = 2(Ge + Gb), Stot =
SeGe + SbGb

Ge + Gb
, (9)

where Gb = σw/L = (e2/h)(w/L)σ̃ is the bulk 
conductance per spin. Though the theory leading 
to equations (7) and (8) initially assumes gL � 1, 
these equations remain formally valid in the opposite 
limit gL � 1, when the edge state contribution to 
the conductance is not influenced by the bulk-edge 

currents and Ge =
e2

h (1 + γL)−1. This means that 

equations (7) and (8) can be used as a reasonable 
approximation for arbitrary gL.

The main results of the our theoretical model is 
given by equations (7) and (8). One can see that the 
function F  contains two terms: the first depends on 
the scattering between edges and the second describing 
the edge to bulk leakage. Two cases can be considered:

2D Mater. 6 (2019) 014001
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 (a)  Fermi level is inside of the gap.

In this case if the bulk transport is suppressed by 
localization the conductance and thermopower are 
governed by the backscattering between the edge 
states.

 (b)  The Fermi level enters conductance (valence) 
band.

The edge state conductance and thermopower 
are determined by equations (7) and (8). If 
(L/w)σ̃ � gL, the presence of the edge to bulk 
scattering does not strongly affect either the resistance 
or the thermopower, because:

F = 1 + γL +
L

w
σ̃. (10)

This also means that even when energy dependence 
of g  is strong, the thermopower sign alteration consid-
ered in model [18] does not occur. For the long narrow 
sample and for high mobility bulk carriers (high con-
ductivity), if (L/w)σ̃ � gL the edge state contribution 
to function F  should be proportional to gL, and the 
conductance and thermopower should be given by:

G =
e2

h
(1 + γL + g)−1 (11)

Se =

(
π2T

3e

)
γ′ + g′

1 + γL + gL
. (12)

Note that for the limiting case γ′ � g′ � 0 the 
thermopower is large and has a positive anomalous 
sign for electrons (for conventional 2D and 3D system 

Seebek coefficient always negative for electrons). This 
mechanism has been predicted in model [18]. Thus, for 
observations of the anomalous thermopower long sam-
ples with suppressed edge to edge scattering is required.

4. Discussion and comparison with 
experiment

In the ballistic case, the edge state contribution to the 
thermopower is absent. However, in the experiment 
we observe thermopower signal in a quasi-ballistic 
case (figures 2 and 4). Generally, it is expected 
that γ  is a smooth function of chemical potential, 
monotonically decreasing away from the CNP, because 
the CNP roughly corresponds to the crossing point 
in the edge-state spectrum, where the transferred 
momentum is zero, and an elastic scattering rate 
usually decreases with increasing transferred 
momentum. This property of the scattering should 
cause a decrease of the resistance with gate voltage 
|Vg − VCNP| and a negative slope of the thermopower 
near the CNP, as it is observed in experiment. If the 
energy is counted from the Dirac point, the transferred 
momentum is q = 2ε/ve. Assuming, for example, 
that the backscattering rate νε is proportional to a 
Lorentzian function γ0/[1 + (ε/ε0)

2], one can find 
γ′/γ = −(2µ/ε2

0)/[1 + (ε/ε0)
2]. The thermopower 

is a linear function of the Fermi energy near the CNP, 
negative in the electron part and positive in the hole 
part. If we assume that the transport near the CNP 
is dominated by the edge states, then the slope of the 
thermopower near the CNP is entirely determined 
by the energy dependence of the backscattering rate. 

Figure 6. (a) Edge states thermopower calculated from equations (7) and (8) as a function of the Fermi energy for different 
distances between the probes, T = 4.2 K. (b) Calculated coefficient GS2 for different distances between the probes as a function of 
the Fermi energy.

2D Mater. 6 (2019) 014001
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In this region the assumed approximation g = 0 is 
relevant.

Figure 6(a) shows the thermopower calculated 
from equations (7) and (8) taking into account the 
Lorentzian energy dependence of the backscatter-
ing rate for different edge channel lengths L  with the 
following parameters: ε0 = 10 meV, γ0 = 1/µm, 
σ̃ = 0.1. One can see a nonlinear length dependence. 
A nonmonotonic length dependence has also been 
observed in our samples (see figure 4(c)). Figure 6(b) 
shows the coefficient GS2 as a function of the energy 
near the CNP in the edge state transport regime at 
T = 4.2 K for different edge channel lengths. The the-
ory (equations (7) and (8)) confirms the predictions of 
the model [18] concerning the dependence on geom-
etry. In practice, however, geometry-related optim-
ization would necessitate the possibility to minimize 
the thermoconductance of a realistic 2D TI. This is 
not feasible in our case, since the thermoconductance 
in our structures is mostly determined by the GaAs 
substrate. One can see that on approaching the CNP 
GS2 increases, goes through a maximum, and then 
reaches its minimum at the CNP, which has also been 
observed in our experiment (figure 5(b)). Note, how-
ever, that the theory is simplified and does not consider 
the asymmetry between electron and hole side near the 
Dirac point. The model reproduces the key feature of 
the thermopower, for example, the ambipolar behav-
iour of the signal, the linear temperature dependence 
and the nonmonotonic dependence on the length.

As we mentioned above, for narrow and long sam-
ple, when if (L/w)σ̃ � gL, the contribution of the 
γ′ and g′ are equally important. Note , however, that 
observation of the nonlocal resistance (figure 5(a)) 
clearly demonstrates that the edge state transport 
inside of the mobility gap (−1.5 V < Vg < 1.5 V). Let 
us assume that gL ∼ γL ∼ 1. In this case the mixing 
between edge states and the bulk becomes important 
for probes 3-2 (L/w = 10) if σ � 0.1e2/h. From our 
model [16] we estimated approximately equal value of 
the bulk conductivity  ∼0.08e2/h). Note, however, that 
alternatively, this bulk conductivity may lead to bulk 
mechanism of the thermopower, considered below.

We can suggest that the bulk transport is important 
in our samples even in the vicinity of the CNP, despite 
the existence of a considerable nonlocal resistance sig-
nifying the presence of the edge transport. One would 
assume that our samples are characterized by a signifi-
cant disorder level which results in the persistence of 
the bulk electron transport even inside the gap, so that 
the bulk component of the conductance exists in the 
whole gate voltage range. Near the center of the gap, the 
bulk transport may be of a hopping variety. A signature 

of such transport would be an exponential temper-

ature dependence of the kind R ∝ exp[(Tc/T)1/3] 
corresponding to the Mott law for 2D carriers. How-
ever, we do not see such a dependence because the bulk 

conductivity is short-circuited by the edge states. On 
the other hand, the temperature behavior of the bulk 
thermopower is not expected to change considerably 
at the transition from the band transport to the hop-
ping transport. For the band transport Sb ∝ T . For the 
hopping transport, the thermopower was calculated in 
[26]. Applied to 2D electrons the result of [26] can be 
written as

Sb = − λ

|e|

[
π − 2

π
(T2

c T)1/3 +
2π

3
T

](
d ln ρµ

dµ

)

 (13)

where λ is a numerical constant of the order of 1, ρε is 
the density of states, Tc is a characteristic temperature 
proportional to 1/(ρµa2

0), and a0 is a localization length 
of the electron wavefunction. Since the Mott law is only 
valid for Tc considerably larger than T , the first term in 
equation (10) is important together with the second 
one. However, in the regime close to the onset of the 
band transport the localization length becomes large 
and Tc is of the order of T  or smaller than T , so only the 
second term in equation (10) remains important and 
Sb is linear in T .

The presence of the logarithmic derivative of the 
density of states is quite a general feature, because 
the conductivity in the hopping transport regime 
is proportional to the square of the density of states. 
Any physically reasonable model of the density of 
states gives a dependence of S qualitatively similar to 
the experimental one. We approximate the density of 
states by the function:

ρe = ρ0 +
ε

πA2
, ε > 0 (14)

ρh = ρ0 + β
ε

πA2
, ε < 0 (15)

where the energy ε is counted from the center of the gap 
εg and ρ0 is the constant background density of states 
describing localized states. The linear function ε/πA2, 
where A = 0.36 eV nm for a well of width d = 8 nm, 
describes the band density of states at ε > εg/2 
in the Dirac model with the electron spectrum 

ε =
√
(εg/2)2 + (Ak)2 . To avoid discontinuities 

at ε = εg/2, the function ε/πA2 is extended to the 
region 0 < ε < εg/2. The equation (12) gives a 
reasonably good description of the density of states 
in the electron part of the spectrum. In the hole part, 
where the dispersion relation is more complicated 
and may include several subbands, no simple model 
exists. However, it can be roughly approximated by 
the same form, with an extra coefficient β (β > 1) 
describing the electron–hole asymmetry, which leads 
to equation (13).

Any physically reasonable model of the density of 
states results in a dependence of S qualitatively simi-
lar to the experimental one. For example, applying a 
Lorentz spectral function to describe the broadening 
of electron states, one obtains

2D Mater. 6 (2019) 014001
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ρe =
1

πA2

[
ε arctan

ε−∆/2

δ
+ ε arctan

ε+∆/2

δ
+

1

2
δCε

]
,

 (16)
where

Cε = ln

(
(ε− Ec)

2 + δ2

(ε−∆/)2 + δ2

)
+ ln

(
(ε+ Ec)

2 + δ2

(ε+∆/2)2 + δ2

)
,

 (17)

where Δ is the broadening energy, Ec  is a large cutoff 
energy. In the hole region (ε < 0) the extra coefficient 
β ≈ 6 is added, and the density of band states is larger. 
An example of the density of states calculated according 
to this expression is shown in figure 7(a) with disorder 
parameters Ec = 150 meV and δ = 6 meV. Applying 
equation (11) with a scaling constant λ ≈ π, one 
may plot the thermopower in the hopping transport 
regime as shown in figure 7(b). This calculation is in 
a reasonable agreement with experiment in the region 
close to the CNP. The numerical constant is closer 
to the metallic case. Strictly speaking, neither the 
hopping nor metallic transport are expected to work 
well in this intermediate regime. Still, it is important 
to get the idea of how the thermopower can depend 
on the electron density around the CNP. Note that 
the better agreement of the experimental results with 
equation (11) requires exact knowledge of the bulk 
conductivity behavior in the gap and hole side regions.

The temperature dependence of thermopower 
does not allow to separate the bulk transport from the 
edge transport, because Se ∝ T as well. Nevertheless, 
there are several reasons to argue that the observed 
thermopower is mostly of the bulk origin. First, the 
asymmetry of the thermopower signal is much larger 
than the asymmetry of the resistance peak. The large 
asymmetry is associated with the bulk transport and 
is the consequence of electron–hole asymmetry in 
HgTe quantum wells (the asymmetry increases with 

the width d  in the 2D TI regime d > 6.3 nm). Second, 
the absolute value of Se, according to equation (10), is 
determined by the energy derivative of γ , which is not 
expected to be large (γ′ is small if the backscattering 
rate is weakly sensitive to the momentum transfer). 
In contrast, the absolute value of Sb is not small even 
in the region of hopping transport, where Sb is deter-
mined by the energy derivative of the density of states 
according to equations (14) and (15). In the transition 
region between the hopping and band transport, Sb is 
expected to be large because both the density of states 
and the bulk conductivity σ strongly depend on the 
energy in this region. Thus, we expect Se � Sb. The 
total thermopower in these conditions is reduced to 
S � Sb/(1 + Ge/Gb).

To conclude this chapter we should note that until 
now only few 2D topological insulators has been 
discovered: HgTe, InAs/GaSb based quantum wells, 
and recently—WTe2 monolayer. Unfortunately in all 
these systems e2/2h in the conductance quantization 
has been observed in micron size devices, which indi-
cates the presence of the backscattering between the 
counter propagating edge states. Thus, for observa-
tion of anomalous sign of the Seebek coefficient, pre-
dicted in the paper [18] it is important to develop a 
technology that reduces the impurity concentration 
in the bulk.

5. Summary and conclusions

In summary, we have studied the thermoelectric power 
together with the resistance behavior in HgTe quantum 
wells. The dependence of the thermopower on the 
gate-controlled carrier density, temperature, and 
device length has been investigated. The thermopower 
shows a behavior expected for electron–hole systems, 

Figure 7. (a) The calculated density of states: black line-without disorder, red line- with disorder. (b) The calculated (hopping 
transport, diffusive mechanism) and experimental thermopower at 4.2 K.

2D Mater. 6 (2019) 014001
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changing sign at the CNP, where the resistance reaches 
the maximum, and decreasing with carrier density 
increasing. The hole thermopower is much stronger 
than the electron one. The temperature dependence of 
the thermopower is close to linear.

Near the CNP, when the Fermi level lies in the gap, 
the resistance is comparable to or larger than h/2e2. The 
bulk of the sample is likely to be localized under these 
conditions, and the resistance is determined mostly by 
the edge transport. Away from the CNP, the bulk diffu-
sive transport takes place. In contrast, the thermopower 
appears to be mostly of the bulk origin, regardless to 
the position of the Fermi level. The trans ition from the 
localized states in the gap to the band conductance does 
not show the anomalies such as strong enhancement 
and sign variation of the thermopower recently sug-
gested in the theoretical works [17, 18]. Our theory of 
a linear thermoelectric response in 2D TI explains the 
absence of these anomalies and supports the conclusion 
about the bulk origin of the observed thermopower.
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